Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 22(23)2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1559503

ABSTRACT

Cancer is one of the most important health problems of our population, and one of the common anticancer treatments is chemotherapy. The disadvantages of chemotherapy are related to the drug's toxic effects, which act on cancer cells and the healthy part of the body. The solution of the problem is drug encapsulation and drug targeting. The present study aimed to develop a novel method of preparing multifunctional 5-Fluorouracil (5-FU) nanocarriers and their in vitro characterization. 5-FU polyaminoacid-based core@shell nanocarriers were formed by encapsulation drug-loaded nanocores with polyaminoacids multilayer shell via layer-by-layer method. The size of prepared nanocarriers ranged between 80-200 nm. Biocompatibility of our nanocarriers as well as activity of the encapsulated drug were confirmed by MTT tests. Moreover, the ability to the real-time observation of developed nanocarriers and drug accumulation inside the target was confirmed by fluorine magnetic resonance imaging (19F-MRI).


Subject(s)
Amino Acids/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemical synthesis , Fluorouracil/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Nanoparticles/administration & dosage , Animals , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Female , Fluorouracil/chemistry , Mammary Neoplasms, Experimental/pathology , Nanoparticles/chemistry , Tumor Cells, Cultured
2.
Elife ; 102021 08 03.
Article in English | MEDLINE | ID: covidwho-1339710

ABSTRACT

The discovery of a drug requires over a decade of intensive research and financial investments - and still has a high risk of failure. To reduce this burden, we developed the NICEdrug.ch resource, which incorporates 250,000 bioactive molecules, and studied their enzymatic metabolic targets, fate, and toxicity. NICEdrug.ch includes a unique fingerprint that identifies reactive similarities between drug-drug and drug-metabolite pairs. We validated the application, scope, and performance of NICEdrug.ch over similar methods in the field on golden standard datasets describing drugs and metabolites sharing reactivity, drug toxicities, and drug targets. We use NICEdrug.ch to evaluate inhibition and toxicity by the anticancer drug 5-fluorouracil, and suggest avenues to alleviate its side effects. We propose shikimate 3-phosphate for targeting liver-stage malaria with minimal impact on the human host cell. Finally, NICEdrug.ch suggests over 1300 candidate drugs and food molecules to target COVID-19 and explains their inhibitory mechanism for further experimental screening. The NICEdrug.ch database is accessible online to systematically identify the reactivity of small molecules and druggable enzymes with practical applications in lead discovery and drug repurposing.


Subject(s)
Drug Design , Drug Discovery/methods , Drug Repositioning , Pharmaceutical Preparations/metabolism , Animals , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Databases, Pharmaceutical , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/metabolism , Fluorouracil/chemistry , Fluorouracil/metabolism , Humans , Pharmaceutical Preparations/chemistry , Workflow , COVID-19 Drug Treatment
3.
Nat Struct Mol Biol ; 27(6): 529-532, 2020 06.
Article in English | MEDLINE | ID: covidwho-222247

ABSTRACT

The antineoplastic drug carmofur is shown to inhibit the SARS-CoV-2 main protease (Mpro). Here, the X-ray crystal structure of Mpro in complex with carmofur reveals that the carbonyl reactive group of carmofur is covalently bound to catalytic Cys145, whereas its fatty acid tail occupies the hydrophobic S2 subsite. Carmofur inhibits viral replication in cells (EC50 = 24.30 µM) and is a promising lead compound to develop new antiviral treatment for COVID-19.


Subject(s)
Betacoronavirus/enzymology , Cysteine Endopeptidases/chemistry , Fluorouracil/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Animals , Betacoronavirus/drug effects , COVID-19 , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Fluorouracil/chemistry , Fluorouracil/pharmacology , Models, Molecular , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL